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Basic Dynamics in Drift

● Governed by the Hamiltonian

−ps = −
√

(E/c)2 − (mc)2 − p2
x − p2

y

● Equations of motion

dx

ds
=

px
√

(E/c)2 − (mc)2 − p2
x − p2

y

dy

ds
=

py
√

(E/c)2 − (mc)2 − p2
x − p2

y

dt

ds
=

E

c2
√

(E/c)2 − (mc)2 − p2
x − p2

y

● Not linear in phase space variables
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Basic Dynamics in Drift (cont.)

● Can integrate exactly:

x(s1) = x(s0) +
px(s1 − s0)

√

(E/c)2 − (mc)2 − p2
x − p2

y

y(s1) = y(s0) +
py(s1 − s0)

√

(E/c)2 − (mc)2 − p2
x − p2

y

t(s1) = t(s0) +
E(s1 − s0)

c2
√

(E/c)2 − (mc)2 − p2
x − p2

y
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Emittance Definition

● Defined in terms of second order moments

Σ(s) =
∫

zz
Tρ(z, s)d6

z

◆ z is phase space variable vector

◆ ρ is phase space density

● Under symplecticlinear transformsz(s′) = M(s′, s)z(s):

Σ(s′) =
∫

zz
Tρ(z, s′)d6

z =
∫

zz
Tρ(M−1(s′, s)z, s)d6

z

= M(s′, s)

[
∫

zz
Tρ(z, s)d6

z

]

MT (s′, s) = M(s′, s)Σ(s)MT (s′, s)

◆ The second equality on the first line is Liouville’s theorem

◆ ε2
6(s) = detΣ(s); M has determinant 1; thus,ε6 is preserved

◆ Note that linear transforms transform ellipsoids into other ellipsoids
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Emittance Definition: Individual Planes

● M(s′, s) can be written asA(s′)R(s′, s)A(s), whereR is 3 2x2 block rotations

◆ Takes this form for ring or other periodic system

◆ Transport line can often be written this way also

● Evolution ofΣ under symplectic linear transformM becomes

A−1(s′)Σ(s′)JA(s′)JR(s′, s) = R(s′, s)A−1(s)Σ(s)JA(s)J

● Hints at procedure

1. Block diagonalizeΣ(s)J ; this gives youA(s)

◆ Blocks are of form

σ(s) =





0 εk
−εk 0





2. New equations areσ(s′)JR = Rσ(s)J

◆ Exercise to the reader:εk are preserved!
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Emittance Growth from Angles

● Constant energy point source

◆ Initially a line in phase space

◆ Becomes a twisted curve

● Start with upright ellipse

◆ After drift, ellipse is distorted

● For givenp, ps decreases with increasingpx

◆ Largerpx: particles take longer to traverse distance due to lowerps

◆ Thus,x change goes faster than linearly inpx

● Alternative view: angles

◆ px/p = sinθx

◆ dx/ds = tanθx
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Compute Emittance Growth from Angles

● Compute emittance (use momenta scaled by referrence momentum):

x1 = x0 +
p0L

√

1− p2
0

≈ x0 + p0L +
1
2
p3

0L +
3
8
p5

0L

ε2
1 = 〈x2〉1〈p

2〉1 − 〈xp〉21 ≈ ε2
0 + 〈p2〉0〈xp3〉0L − 〈p4〉0〈xp〉0L

+
3
4
〈p2〉0〈xp5〉0L −

3
4
〈xp〉0〈p

6〉0L +
1
4
〈p2〉0〈p

6〉0L
2 −

1
4
〈p4〉20L

2

● Starting with upright Gaussian beam,

ε2
1 ≈ ε2

0 +
3
2
σ8

pL
2
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Emittance Growth from Energy Spread

● Larger total energy for givenpx

◆ Arrives at destination faster

◆ Less time to move transversely for givenpx

◆ Less ellipse tilt

● Correlation between ellipse tilt and energy

◆ This is athird order moment (xpxδ)

◆ In second order moments, appears as extra terms: emittance growth

◆ Upright Gaussian beam:

ε2
1 ≈ ε2

0 + σ4
pσ

2
δL

2 + 3

(

L

2γ2βc

)2

σ6
δ
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Conclusions

● Emittance comes from second order moment matrix

● Emittance is generally preserved only under linear transforms

● Drift is nonlinear

◆ Comes both from angle and energy spread

● Nonlinearity leads to emittance growth
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